Identification of two functional nuclear localization signals in DNase gamma and their roles in its apoptotic DNase activity.

نویسندگان

  • Daisuke Shiokawa
  • Yukari Shika
  • Sei-ichi Tanuma
چکیده

Among DNase I family members, only DNase gamma causes DNA fragmentation during apoptosis. However, the molecular basis for this functional feature of DNase gamma is poorly understood. Here we describe the identification of functional NLSs (nuclear localization signals) in DNase gamma and their roles in its apoptotic function. DNase gamma contains two NLSs: a classical bipartite-type NLS (NLS1) located in the N-terminal half, and a short basic domain (NLS2) at the C-terminus. No potential NLSs are found in the primary structures of other DNase I family DNases. Inactivation of either NLS1 or NLS2 causes reduced DNA ladder-producing activity in DNase gamma. Disruption of NLS2 suppresses ladder formation more effectively than disruption of NLS1. DNase gamma doubly mutated in both NLSs is enzymically active, but no longer catalyses apoptotic DNA fragmentation. Although DNase I fails to produce ladder formation during apoptosis, DNase I fused to NLS2 of DNase gamma through its C-terminus is able to catalyse DNA fragmentation in apoptotic cells. These results indicate that the presence of either NLS1 or NLS2 is necessary for the apoptotic function of DNase gamma, and that the most important domain for this function is NLS2. These findings also explain the lack of apoptotic DNase activity in the other DNase I family DNases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional characterization of DNase X, a novel endonuclease expressed in muscle cells.

The activation of endonucleases resulting in the degradation of genomic DNA is one of the most characteristic changes in apoptosis. Here, we report the characterization of a novel endonuclease, termed DNase X due to its X-chromosomal localization. The active nuclease is a 35 kDa protein with 39% identity to DNase I. When incubated with isolated nuclei, recombinant DNase X was capable of trigger...

متن کامل

Molecular cloning and expression of a cDNA encoding an apoptotic endonuclease DNase gamma.

An endonuclease named DNase gamma has been purified from the nuclei of apoptotic rat thymocytes [Shiokawa, Ohyama, Yamada and Tanuma (1997) Biochem. J. 326, 675-681]. Here we report the molecular cloning of a cDNA encoding a 35 kDa precursor protein for rat DNase gamma. A 1.6 kb mRNA coding for the DNase gamma precursor is detected at high levels in spleen, lymph nodes, thymus and liver. By usi...

متن کامل

Androgen Ablation Leads to an Upregulation and Intranuclear Accumulation of Deoxyribonuclease I in Rat Prostate Epithelial Cells Paralleling Their Apoptotic Elimination

After androgen ablation by castration, the epithelial cells of the rat ventral prostate are eliminated by apoptosis. The number of cells showing apoptotic chromatin degradation increases with time up to day 3 after castration as verified by in situ end labeling of fragmented DNA. Apoptotic chromatin degradation is catalyzed by a Ca2+, Mg2+-dependent endonuclease. Recently, evidence has been pre...

متن کامل

Determinants of the Nuclear Localization of the Heterodimeric DNA Fragmentation Factor (Icad/Cad)

Programmed cell death or apoptosis leads to the activation of the caspase-activated DNase (CAD), which degrades chromosomal DNA into nucleosomal fragments. Biochemical studies revealed that CAD forms an inactive heterodimer with the inhibitor of caspase-activated DNase (ICAD), or its alternatively spliced variant, ICAD-S, in the cytoplasm. It was initially proposed that proteolytic cleavage of ...

متن کامل

The Roles and Acting Mechanism of Caenorhabditis elegans DNase II Genes in Apoptotic DNA Degradation and Development

DNase II enzymes are acidic endonucleases that have been implicated in mediating apoptotic DNA degradation, a critical cell death execution event. C. elegans genome contains three DNase II homologues, NUC-1, CRN-6, and CRN-7, but their expression patterns, acting sites, and roles in apoptotic DNA degradation and development are unclear. We have conducted a comprehensive analysis of three C. ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 376 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003